Making Kubernetes Production-Ready: A Practical Checklist
Moving from a development Kubernetes cluster to a production-ready environment is a significant leap that requires careful planning and attention to detail. After deploying multiple production Kubernetes clusters across different industries, I've compiled this comprehensive checklist to help you avoid common pitfalls and ensure your cluster is truly production-ready.
1. Cluster Architecture and High Availability
Multi-Zone Deployment
Your cluster should span multiple availability zones to ensure resilience against zone failures:
apiVersion: v1
kind: Node
metadata:
name: node-1
labels:
topology.kubernetes.io/zone: eastus-1
topology.kubernetes.io/region: eastus
For Azure Kubernetes Service (AKS), enable zone redundancy:
resource "azurerm_kubernetes_cluster" "main" {
name = "production-aks"
location = azurerm_resource_group.main.location
resource_group_name = azurerm_resource_group.main.name
dns_prefix = "production-aks"
default_node_pool {
name = "system"
node_count = 3
vm_size = "Standard_D4s_v3"
zones = ["1", "2", "3"]
# Enable auto-scaling
enable_auto_scaling = true
min_count = 3
max_count = 10
}
}
Separate Node Pools
Use dedicated node pools for different workload types:
- System pool: For system components (kube-system, monitoring)
- Application pool: For your application workloads
- Batch pool: For batch processing jobs (with taints and tolerations)
2. Security Hardening
Pod Security Standards
Implement Pod Security Standards to enforce security policies:
apiVersion: v1
kind: Namespace
metadata:
name: production-apps
labels:
pod-security.kubernetes.io/enforce: restricted
pod-security.kubernetes.io/audit: restricted
pod-security.kubernetes.io/warn: restricted
Network Policies
Implement network segmentation with Network Policies:
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: deny-all-ingress
namespace: production-apps
spec:
podSelector: {}
policyTypes:
- Ingress
- Egress
egress:
- to: []
ports:
- protocol: TCP
port: 53
- protocol: UDP
port: 53
RBAC Configuration
Implement least-privilege access control:
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
namespace: production-apps
name: app-deployer
rules:
- apiGroups: ["apps"]
resources: ["deployments", "replicasets"]
verbs: ["get", "list", "watch", "create", "update", "patch"]
- apiGroups: [""]
resources: ["pods", "services"]
verbs: ["get", "list", "watch"]
3. Resource Management and Limits
Resource Quotas
Prevent resource exhaustion with namespace quotas:
apiVersion: v1
kind: ResourceQuota
metadata:
name: production-quota
namespace: production-apps
spec:
hard:
requests.cpu: "10"
requests.memory: 20Gi
limits.cpu: "20"
limits.memory: 40Gi
pods: "50"
Pod Disruption Budgets
Ensure availability during updates and maintenance:
apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
name: web-app-pdb
spec:
minAvailable: 2
selector:
matchLabels:
app: web-app
Horizontal Pod Autoscaler
Configure automatic scaling based on metrics:
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: web-app-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: web-app
minReplicas: 3
maxReplicas: 50
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
4. Monitoring and Observability
Comprehensive Monitoring Stack
Deploy a monitoring solution with Prometheus and Grafana:
apiVersion: v1
kind: ConfigMap
metadata:
name: prometheus-config
data:
prometheus.yml: |
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
Centralized Logging
Implement centralized logging with proper retention policies:
apiVersion: logging.coreos.com/v1
kind: ClusterLogForwarder
metadata:
name: instance
spec:
outputs:
- name: azure-storage
type: azureMonitor
azureMonitor:
customerId: "${WORKSPACE_ID}"
sharedKey: "${WORKSPACE_KEY}"
pipelines:
- name: application-logs
inputRefs:
- application
outputRefs:
- azure-storage
5. Backup and Disaster Recovery
Velero Backup Configuration
Set up automated backups with Velero:
apiVersion: velero.io/v1
kind: Schedule
metadata:
name: daily-backup
spec:
schedule: "0 2 * * *"
template:
includedNamespaces:
- production-apps
- monitoring
storageLocation: azure-backup-location
ttl: 720h0m0s # 30 days
Database Backups
For stateful workloads, implement application-consistent backups:
apiVersion: batch/v1
kind: CronJob
metadata:
name: postgres-backup
spec:
schedule: "0 3 * * *"
jobTemplate:
spec:
template:
spec:
containers:
- name: postgres-backup
image: postgres:14
command:
- /bin/bash
- -c
- |
pg_dump -h postgres-service -U $POSTGRES_USER $POSTGRES_DB | \
gzip > /backup/backup-$(date +%Y%m%d_%H%M%S).sql.gz
env:
- name: POSTGRES_USER
valueFrom:
secretKeyRef:
name: postgres-secret
key: username
6. GitOps and Deployment Strategies
ArgoCD for GitOps
Implement GitOps for declarative deployments:
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
name: production-app
namespace: argocd
spec:
project: default
source:
repoURL: https://github.com/yourorg/k8s-manifests
targetRevision: main
path: production
destination:
server: https://kubernetes.default.svc
namespace: production-apps
syncPolicy:
automated:
prune: true
selfHeal: true
Blue-Green Deployments
Use Argo Rollouts for advanced deployment strategies:
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
name: web-app
spec:
replicas: 10
strategy:
blueGreen:
activeService: web-app-active
previewService: web-app-preview
autoPromotionEnabled: false
scaleDownDelaySeconds: 30
prePromotionAnalysis:
templates:
- templateName: success-rate
args:
- name: service-name
value: web-app-preview
selector:
matchLabels:
app: web-app
7. Performance and Cost Optimization
Vertical Pod Autoscaler
Right-size your pods automatically:
apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
name: web-app-vpa
spec:
targetRef:
apiVersion: apps/v1
kind: Deployment
name: web-app
updatePolicy:
updateMode: "Auto"
resourcePolicy:
containerPolicies:
- containerName: web-app
maxAllowed:
cpu: 2
memory: 4Gi
Cluster Autoscaler
Configure cluster-level autoscaling:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-autoscaler-status
namespace: kube-system
data:
nodes.max: "100"
nodes.min: "3"
scale-down-delay-after-add: "10m"
scale-down-unneeded-time: "10m"
Production Readiness Checklist
Before going live, verify:
- [ ] Multi-zone cluster deployment
- [ ] RBAC properly configured
- [ ] Network policies implemented
- [ ] Resource quotas and limits set
- [ ] Pod disruption budgets configured
- [ ] Monitoring and alerting operational
- [ ] Centralized logging implemented
- [ ] Backup strategy tested
- [ ] Disaster recovery plan documented
- [ ] Security scanning integrated
- [ ] Performance testing completed
- [ ] Runbooks created for common scenarios
Conclusion
Production-ready Kubernetes requires attention to detail across multiple domains. The key is to implement these practices incrementally and test thoroughly. Remember, production readiness isn't a destination—it's an ongoing process of improvement and refinement.
Start with the fundamentals (HA, security, monitoring) and gradually add more sophisticated features as your team's expertise grows. The investment in proper setup pays dividends in operational stability and team confidence.
Have you faced challenges getting Kubernetes production-ready? What practices have worked best in your environment? Connect with me on LinkedIn to share your experiences.